

IOT MONITORING SYSTEM

Smarter Monitoring for Safer Infrastructure

TABLE OF CONTENTS

Revolutionizing Monitoring With IoT	02
Our lot Monitoring Flow	03
Our IoT Loggers Technology	04
Supported Sensor Types	05
Real-Time Dashboard Access	06
Case Studies: IoT In Action	07
Industries We Serve	11
Why Choose Us	16

01 | Table of Contents

REVOLUTIONIZING MONITORING WITH IOT

At Ryobi-G, we believe that smart infrastructure requires smart monitoring. Our IoT-enabled geotechnical monitoring system is designed to help engineers, contractors, and asset owners gain real-time visibility into ground and structural behavior — from surface movement and tunnel deformation to water pressure and slope stability.

CHALLENGES WE SOLVE

TIME-CONSUMING MANUAL MONITORING

Frequent site visits, manual downloads, and disconnected tools slow down response and increase labor cost.

delays.

DELAYED DETECTION OF GROUND MOVEMENT

Without real-time data, early signs of instability can go unnoticed — increasing safety risks and project

SCATTERED DATA ACROSS MULTIPLE PLATFORMS

Traditional setups involve different systems for different sensors, making it difficult to view, manage, and act on data efficiently.

From traditional challenges to modern solutions — we make geotechnical monitoring easier, safer, and smarter.

www.ryobi-g.com

02 | Revolutionizing Monitoring With IoT

OUR IOT MONITORING FLOW

The Ryobi-G IoT Monitoring System connects field data to decision-makers through a fully integrated workflow. From sensor to cloud, every step is optimized for accuracy, automation, and remote accessibility.

SENSOR INSTALLATION

We start by installing various sensors on-site, such as total stations, inclinometers, vibrating wire (VW) sensors,depending on the monitoring requirements.

DATA LOGGING

Ryobi G

These sensors are then connected to specialized data loggers which collect readings at set measurement intervals.

The incoming data is sent to a central Database Server for hosting, processing, and analysis. To maintain data integrity and prevent loss, all information is automatically backed up to a Secondary Server.

DATA TRANSMISSION

Once the data is collected, it is transmitted wirelessly using 3G, 4G, or 5G communication methods to ensure real-time or near real-time data transfer.

FINISH

03 Our IoT Monitoring

Flow

DATA DISTRIBUTION & OUTPUT

The processed data is the visualized via the WIRS Data Visual platform, pushed to users through a Data Push Facility, and monitored by a Health Check system to ensure all devices function properly. Users also receive real-time alerts for critical events, while all raw data is securely archived for future analysis.

OUR IOT LOGGERS TECHNOLOGY

At the heart of our IoT system are high-performance data loggers that collect, transmit, and safeguard your site data — automatically. Whether you need to monitor pore pressure, track surface movement, or capture deep inclinometer profiles, our logger options are built to match the job.

www.ryobi-g.com

04 | Our loT Loggers Technology

SUPPORTED SENSOR TYPES

Ryobi-G's IoT monitoring platform effortlessly connects with a wide range of geotechnical and structural sensors — from shallow installations to deep tunnels, covering everything from static loads to real-time movement. Here are some of the key sensors we deploy in our projects.

INCLINOMETER

Detects horizontal ground movement by tracking tilt changes within a casing installed in boreholes. Essential for monitoring slope stability, landslide-prone areas, retaining walls, and deep basement excavations.

Used to measure displacement or separation between fixed anchor points—either in soil, rock, or structures. This helps assess internal deformation in embankments, tunnels, or foundations

Measures pore water pressure in soil and rock. This data is critical for understanding slope behavior, evaluating earth pressures, and assessing risk in deep excavations, retaining structures, or embankments.

Monitors crack width variations in concrete, rock, or masonry over time. Ideal for assessing the structural integrity of dams, tunnels, bridges, and historical structures.

Detects slight angular changes in structures or ground surfaces. Often deployed on retaining walls, slopes, or buildings to give early warning of potential instability or deformation.

Provides high-accuracy elevation readings to monitor settlement or heave of structures and ground surfaces. Often used in real-time systems for buildings, railways, and critical infrastructure.

An optical surveying instrument that delivers high-precision 3D measurements of point movements over time. Combined with prisms, it enables structural and deformation monitoring for bridges, buildings, and slopes.

Mounted on structures or slopes and read by a total station to detect sub-millimeter displacement. Used for continuous or periodic deformation monitoring with high accuracy.

Measure strain, temperature, or vibration using light signals in optical fibers. Ideal for long-distance, real-time monitoring with high accuracy and durability..

www.ryobi-g.com

05 | Supported Sensor Types

REAL TIME DASHBOARD ACCESS

Ryobi-G's cloud-based dashboard gives engineers, consultants, and clients full access to site data — in real-time, from any device, anywhere in the world. No more manual downloads or site visits. Just clear, organized, actionable insights.

Access What Matters—Wherever You Are

www.ryobi-g.com

06 | Real-Time Dashboard Access

CASE STUDIES

From deep tunnels to airport taxiways, Ryobi-G's IoT monitoring solutions have been deployed across some of Singapore's most complex and sensitive infrastructure works. These case studies showcase how real-time data, automated alerts, and advanced sensor integration help clients achieve safer, smarter, and more efficient project outcomes.

TUNNEL STRUCTURAL HEALTH MONITORING

FIBER OPTIC MONITORING FOR DTSS PHASE 2 (TIMS CONTRACT)

PUB's DTSS Phase 2 is a key national infrastructure project designed to enable long-term, sustainable water management.

As part of this initiative, Ryobi-G was entrusted with the Tunnel Integrity Monitoring System (TIMS) – leveraging cutting-edge fiber optic technology to deliver continuous, real-time tunnel health monitoring.

KEY CHALLENGES & SOLUTIONS

NON INTRUSIVE

Enabled non-intrusive tunnel monitoring with no need for physical entry

Enables continuous monitoring, especially during nearby construction or seismic activity

Supports proactive asset management through automated data feeds

MONITORING SCOPE & TECHNOLOGIES

COVERAGE ~36 km of deep tunnels

INSTALLATION ~150 km of fiber optic sensors laid longitudinally and transversely

TECHNOLOGY BOFDA (Brillouin Optical Frequency Domain Analysis)

CAPABILITIES Simultaneous strain and temperature sensing

INTEGRATION Linked to PUB's AMANDA system for live alerts and data visualization

EARLY DETECTION

OPERATIONAL EFFICIENCY

SAFETY & COMPLIANCE

07

Case Studies:

IoT In Action

CASE STUDIES

URBAN GEOTECHNICAL & STRUCTURAL MONITORING

CROSS ISLAND LINE (CRL) – URBAN TUNNEL MONITORING

The Cross Island Line (CRL) is Singapore's longest underground MRT line, built through high-density urban areas and sensitive infrastructure.

Ryobi-G was selected to provide real-time geotechnical monitoring across several construction packages, helping ensure safe tunneling near live MRT tunnels, roads, and heritage sites.

MONITORING SCOPE & TECHNOLOGIES

INSTRUMENTS

Over 1000+ instruments installed

ZONES COVERED

MRT tunnels, TBM launch zones, buildings, roads, utilities

TECHNOLOGY

>99% SYSTEM UPTIME

INCIDENTS AVOIDED

EFFICIENCY GAINS

Automated Total Stations (ATS)

- Wireless Tiltmeters and Vibration Meters
- Real-Time Piezometers, Standpipes, Rod Extensometers
- IoT Gateway & Cloud Dashboard

KEY CHALLENGES & SOLUTIONS

CONTINUOUS MONITORING Enabled continuous monitoring under live MRT tunnels with zero disruption

HIGH-DENSITY DEPLOYMENT Managed high sensor density in confined urban spaces

CENTRALIZED DATA INTEGRATION Integrated data across multiple contracts for unified client visualization

REAL-TIME ALERTS

Real-time alerts for threshold breaches with automated escalation

REGULATORY ASSURANCE

QUICK DECISION-MAKING

08 | Case Studies: IoT In Action

CASE STUDIES

AVIATION INFRASTRUCTURE MONITORING

CHANGI AIRPORT T5-T2 UNDERGROUND LINK MONITORING

To support future growth, CAG is constructing a 2.5 km underground link between Terminal 5 and Terminal 2. The corridor runs beneath active runways and taxiways, requiring a non-intrusive, real-time geotechnical monitoring solution.

Ryobi-G was engaged to deliver continuous oversight while maintaining full airport operational integrity.

MONITORING SCOPE & TECHNOLOGIES

SURFACE MONITORING Reflectorless ATS for scanning

Reflectorless ATS for scanning runways, taxiways, and nearby structures

SUBSURFACE MONITORING

Rod Extensometers and Vibrating Wire Piezometers

DATA SYSTEM

• Wireless dataloggers with 4G transmission

 WIRS (Web Instrumentation Reporting System) with real-time dashboards, GIS maps, user roles, and auto-alerts

KEY CHALLENGES & SOLUTIONS

NON-INTRUSIVE DEPLOYMENT

Installed sensitive instruments in live aviation zones with no operational impact

PRECISION OVER LONG DISTANCES

Delivered accurate monitoring across a 2.5 km tunnel alignment

MULTI-STAKEHOLDER ACCESS

Provided real-time, role-based access to multiple stakeholders

REGULATORY COMPLIANCE

Ensured compliance with strict aviation safety standards

ZERO DISRUPTIONS

FAST RESPONSE

IMPROVED EFFICIENCY

COLLABORATIVE ACCESS

REGULATORY COMPLIANCE

www.ryobi-g.com

09 | Case Studies: IoT In Action

Our IoT monitoring platform supports a wide range of geotechnical and structural applications — from deep underground to densely populated urban zones.

TUNNELING & SHAFT MONITORING

Track strain, displacement, and deformation in deep tunnels and shafts throughout excavation and operation phases.

RAILWAY & MRT INFRASTRUCTURE

Ensure safe construction and operations near live rail systems through real-time monitoring of adjacent tunnels, stations, and utilities.

AIRPORTS & AVIATION ZONES

Deploy non-intrusive systems under runways and taxiways for underground works without disrupting airport operations.

URBAN DEVELOPMENT & STRUCTURAL

Safeguard surrounding structures, roads, and utilities in high-density areas during deep excavation or foundation works.

SLOPE & EMBANKMENT STABILITY

Detect early signs of ground movement or landslides in slope-prone areas with tilt and settlement monitoring.

Industries

We Serve

10

CAN'T FIND YOUR INDUSTRY? TALK TO US!

URBAN CONSTRUCTION MONITORING WITH IOT INTEGRATION

KEY HIGHLIGHTS

IoT sensors deployed across construction zones, vehicles, and infrastructure.

Real-time tracking of equipment, materials, and site activity

Integration with urban mobility systems (e.g., roads, rail).

Enhanced situational awareness for safety and project coordination Scalable for complex, multi-phase urban developments

11

Industries

We Serve

OVERVIEW

This dynamic urban environment showcases real-time connectivity through strategically placed IoT points—highlighted across machinery, vehicles, buildings, and infrastructure.

From the bustling construction pit to the surrounding streets and rail systems, every element is connected, monitored, and optimized for safety, efficiency, and sustainability.

PRECISION MONITORING FOR SMARTER CITIES

OVERVIEW

This cityscape features an IoT-powered surveying system.

A smart instrument connects wirelessly to multiple sensors on buildings and the ground-including the Ryobi G device-capturing precise measurements for structural health, alignment, and urban development.

IOT MONITORING AT TRANSIT HUBS

KEY HIGHLIGHTS

Real-time monitoring of platform activity and crowd flow

IoT-based scanning for infrastructure and environmental data

Wireless data transmission for centralized analysis \checkmark

Supports operational efficiency and safety compliance Scalable for integration across transit networks

OVERVIEW

This train station platform features an IoT-enabled monitoring system. A Ryobi G scanning device actively scans the area, connecting to multiple points across the platform. The system enables real-time data collection for crowd flow, platform activity, and infrastructure conditions—supporting safer, more efficient transit operations through intelligent monitoring.

www.ryobi-g.com

13 | Industries We Serve

SUBSURFACE MONITORING WITH IOT SENSORS

KEY HIGHLIGHTS

for fluid or soil

ing

Underground sensor Real-time data transmission to surface-level Ryobi G

Supports geotechnical and environmental applications

Enables predictive maintenance and risk alerts

Compact, cable-con-nected deployment for remote sites

14

Industries

We Serve

OVERVIEW

condition monitor-

A sensor is embedded below ground, connected to a Ryobi G device at the surface. This setup enables continuous monitoring of subsurface conditions such as fluid levels or soil stability. Data is transmitted in real time, supporting proactive decision-making in construction, environmental, and geotechnical applications.

CONSTRUCTION ACTIVITY DETECTION IN RESIDENTIAL ZONES

KEY HIGHLIGHTS

Real-time detection of nearby construction activity

Solar-powered Ryobi G for sustainable monitoring

Alerts for noise, vibration, and movement

H	

Integrated building and roadside monitoring

Designed for residential safety and compliance

OVERVIEW

A Ryobi G device, powered by a solar panel, monitors construction activity near residential buildings. The system detects environmental and structural changes—such as noise, vibration, and movement—triggered by nearby worksites. With integrated signal-based detection and real-time alerts, it helps ensure safety, compliance, and minimal disruption to the community.

www.ryobi-g.com

15 | Industries We Serve

WHY CHOSE US

At Ryobi-G, we go beyond providing instruments — we deliver end-to-end monitoring solutions tailored to the unique demands of every project. From deep tunnels to airport runways, our systems are built for precision, reliability, and real-time responsiveness.

'nν

Źhoose Us

EMPOWERING SAFER INFRASTRUCTURE THROUGH SMARTER MONITORING

Let's build smarter, safer infrastructure together. Contact us to discuss how our monitoring solutions can support your next project!

GET IN TOUCH

+65 6369 7100 (Singapore) +603 7880 2684 (International)

rock@ryobi-g.com

 \times

Ryobi Geotechnique International Pte Ltd 70 Sungei Kadut Loop Singapore 729511

Ryobi Geotechnique (M) Sdn Bhd 31-5, Block E1, Jalan PJU 1/42, Dataran Prima, 47301 Petaling Jaya, Selangor:

